
n-Queens — 346 references

This paper currently (November 27, 2024) contains 346 references (originally in BIB-
TEX format) to articles dealing with or at least touching upon the well-known n-Queens
problem. For many papers an abstract written by the authors (147×), a short note (51×),
a doi (137×) or a url (80×) is added.

How it all began

The literature is not totally clear about the exact article in which the n-Queens prob-
lem is first stated, but the majority of the votes seems to go to the 1848 Bezzel article
“Proposal of the Eight Queens Problem” (title translated from German) in the Berliner
Schachzeitung [Bez1848]. From this article on there have been many papers from many
countries dealing with this nice and elegant problem. Starting with examining the original
8× 8 chessboard, the problem was quickly generalized to the n-Queens Problem.
Interesting fields of study are: Permutations, Magic Squares, Genetic Algorithms, Neural
Networks, Theory of Graphs and of course “doing bigger boards faster”. And even today
there are still people submitting interesting n-Queens articles: the most recent papers are
from 2023. Just added: [BK2021, CHZ2013, Sim2021, TA2023]. Still to do the newest
papers . . .

One Article To Hold Them All

The paper “A Survey of Known Results and Research Areas for n-Queens” [BS2009] is
a beautiful, rather complete survey of the problem. We thank the authors for the many
references they have included in their article. We used them to make, as we hope, this
n-Queens reference bibliography even more interesting.

Searchable Online Database

Using the JabRef software (http://www.jabref.org/), we publish a searchable online
version of the bib-file. It is available through:

www.vnster.nl/nqueens/

The underlying BIBTEX file is also available, as is this PDF version of the references.
We hope you will enjoy this entry to the world of n-Queens! Thanks: Egbert Meissenburg
and many others. Remarks and additions are welcome . . .

Walter Kosters, walterkosters@gmail.com
Pieter Bas Donkersteeg, pieterbasdonkersteeg@gmail.com
Leiden, November 27, 2024
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odd cycles. The representation of the Cartesian product of an odd cycle and an even
cycle remains an open problem. We also prove constructively that any finite subgraph
of the rectangular grid or the hexagonal grid is a queens graph. Using a small computer
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paper describes a new divide-and-conquer algorithm that solves both problems and in-
vestigates the relationship between them. The connection between the solutions of the
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√
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ture, thus answering Pólya’s question asymptotically. Furthermore, we also show that
Q(n) ≥ ((1+o(1))ne−3)n for all n sufficiently large, which was independently proved by
Luria and Simkin. Combined with our main result and an upper bound of Luria, this
completely settles a conjecture of Rivin, Vardi and Zimmmerman from 1994 regarding
both Q(n) and T (n). Our proof combines a random greedy algorithm to count ’almost’
configurations with a complex absorbing strategy that uses ideas from the recently de-
veloped methods of randomised algebraic construction and iterative absorption.

[Blu1928] L.M. Blumenthal. Discussions: An extension of the Gauss problem of eight
queens. The American Mathematical Monthly, 35(6):307–309, 1928. doi>

5

http://dx.doi.org/10.1145/122319.122322
https://arxiv.org/abs/2109.08083
http://dx.doi.org/10.2307/2298678


[BM1999] A.P. Burger and C.M. Mynhardt. Queens on hexagonal boards. Journal of
Combinatorial Mathematics and Combinatorial Computing, 31:97–111, 1999.

[BM2000a] A.P. Burger and C.M. Mynhardt. Properties of dominating sets of the queens
graph Q4k+3. Utilitas Mathematica, 57:237–253, 2000.

[BM2000b] A.P. Burger and C.M. Mynhardt. Small irredundance numbers for queens
graphs. Journal of Combinatorial Mathematics and Combinatorial Computing, 33:33–
43, 2000.

[BM2000c] A.P. Burger and C.M. Mynhardt. Symmetry and domination in queens’
graphs. Bulletin of the Institute of Combinatorics and its Applications, 29:11–24, 2000.

[BM2002] A.P. Burger and C.M. Mynhardt. An upper bound for the minimum number
of queens covering the n × n chessboard. Discrete Applied Mathematics, 121:51–60,
2002. doi>
Abstract We show that the minimum number of queens required to cover the n× n
chessboard is at most 8

15
n+O(1).

[BM2003] A.P. Burger and C.M. Mynhardt. An improved upper bound for queens dom-
ination numbers. Discrete Mathematics, 266:119–131, 2003. doi>
Abstract We consider the domination number of the queens graph Qn and show
that if, for some fixed k, there is a dominating set of Q4k+1 of a certain type with
cardinality 2k + 1, then for any n large enough, γ(Qn) ≤ [(3k + 5)/(6k + 3)] + O(1).
The same construction shows that for any m ≥ 1 and n = 2(6m − 1)(2k + 1) − 1,
γ(Qt

n) ≤ [(2k + 3)/(4k + 2)] +O(1) where Qt
n is the toroidal n× n queens graph.

[BMC1994] A.P. Burger, C.M. Mynhardt, and E.J. Cockayne. Domination numbers for
the queens’ graph. Bulletin of the Institute of Combinatorics and its Applications,
10:73–82, 1994.

[BMC2001] A.P. Burger, C.M. Mynhardt, and E.J. Cockayne. Queens graphs for chess-
boards on the torus. Australasian Journal of Combinatorics, 24:231–246, 2001. url
Abstract We consider the independence, domination and independent domination
numbers of graphs obtained from the moves of queens on chessboards drawn on the
torus, and determine exact values for each of these parameters in infinitely many cases.

[BMC2004] A.P. Burger, C.M. Mynhardt, and E.J. Cockayne. Regular solutions of the
n-queens problem on the torus. Utilitas Mathematica, 65:219–230, 2004.
Abstract The n-queens problem on the torus is the problem of placing n queens on
an n× n chessboard drawn on the torus so that no two queens attack each other. This
is known to be possible if and only if n ≡ ±1 (mod 6). A solution to this problem is
said to be regular if it places queens on all squares with co-ordinates (x+ a, kx+ b) for
some fixed integers k 6= 0, a and b. We determine the number of non-isometric regular
solutions for each n ≡ ±1 (mod 6).

[BP1967] B.T. Bennett and R.B. Potts. Arrays and brooks. Journal of the Australian
Mathematical Society, 7:23–31, 1967. doi>
Note Combinatorial problems concerning rooks, Queens, bishops and knights on a
chess board.

6

http://dx.doi.org/10.1016/S0166-218X(01)00244-X
http://dx.doi.org/10.1016/S0012-365X(02)00802-6
https://ajc.maths.uq.edu.au/pdf/24/ajc-v24-p231.pdf
http://dx.doi.org/10.1017/S144678870000505X


[BR1975] J.R. Bitner and E.M. Reingold. Backtrack programming techniques. Commu-
nications of the ACM, 18:651–656, 1975. doi>
Abstract The purpose of this paper is twofold. First, a brief exposition of the gen-
eral backtrack technique and its history is given. Second, it is shown how the use of
macros can considerably shorten the computation time in many cases. In particular,
this technique has allowed the solution of two previously open combinatorial problems,
the computation of new terms in a well-known series, and the substantial reduction in
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Abstract In this article, we show how to construct pairs of orthogonal pandiagonal
Latin squares and panmagic squares from certain types of modular n-Queens solutions.
We prove that when these modular n-Queens solutions are symmetric, the panmagic
squares thus constructed will be associative, where for an n×n associative magic square
A = (aij), for all i and j it holds that aij + an−i−1,n−j−1 = c for a fixed c. We further
show how to construct orthogonal Latin squares whose modular difference diagonals are
Latin from any modular n-Queens solution. As well, we analyze constructing orthogo-
nal pandiagonal Latin squares from particular classes of non-linear modular n-Queens
solutions. These pandiagonal Latin squares are not row cyclic, giving a partial solution
to a problem of Hedayat. 2007

[BS2008] J. Bell and B Stevens. Results for the n-queens problem on the Möbius board.
Australasian Journal of Combinatorics, 42:21–34, 2008. url
Abstract In this paper we consider the extension of the n-queens problem to the
Möbius strip; that is, the problem of placing a maximum number of nonattacking queens
on the m × n chessboard for which the left and right edges are twisted connected. We
prove the existence of solutions for the m × n Möbius board for classes of m and n
with density 25/48 in the set of all m× n M obius boards, and show the impossibility
of solutions for a set of m and n with density 1/16. We also have computed the total
number of solutions for the m×m Möbius board for m from 1 to 16.

[BS2009] J. Bell and B. Stevens. A survey of known results and research areas for n-
queens. Discrete Mathematics, 309:1–31, 2009. doi>
Abstract In this paper we survey known results for the n-Queens problem of placing
n nonattacking Queens on an n×n chessboard and consider extensions of the problem,
e.g. other board topologies and dimensions. For all solution constructions, we either give
the construction, an outline of it, or a reference. In our analysis of the modular board,
we give a simple result for finding the intersections of diagonals. We then investigate
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a number of open research areas for the problem, stating several existing and new
conjectures. Along with the known results for n-Queens that we discuss, we also give a
history of the problem. In particular, we note that the first proof that n nonattacking
Queens can always be placed on an nn board for n > 3 is by E. Pauls, rather than by
W. Ahrens who is typically cited. We have attempted in this paper to discuss all the
mathematical literature in all languages on the n-Queens problem. However, we look
only briefly at computational approaches.

[Bus1922] W.H. Bussey. A note on the problem of the eight queens. The American
Mathematical Monthly, 29(7):252–253, 1922. doi>

[Cai2001] G. Cairns. Queens on non-square tori. The Electronic Journal of Combina-
torics, 8(1)(N6):1–3, 2001. url

[Cai2002] G. Cairns. Pillow chess. Mathematics Magazine, 75:173–186, 2002. url

[Cam1977] P.J. Campbell. Gauss and the eight queens problem, A study in miniature of
the propagation of historical error. Historia Mathematica, 4:397–404, 1977. doi>
Abstract An 1874 article by J. W. L. Glaisher asserted that the eight queens problem
of recreational mathematics originated in 1850 with Franz Nauck proposing it to Gauss,
who then gave the complete solution. In fact the problem was first proposed two years
earlier by Max Bezzel, proposed again by Nauck in a newspaper Gauss happened to
read, and only partially solved by Gauss in a casual attempt. Glaisher had access to
an accurate account of the history in German but perhaps could not read the language
well; the error subsequently spread through the recreational mathematics literature.

[Cat1864] E.C. Catalan. Unknown. In Nouvelles Annales de Mathématiques 216me, t.
XIII, page 187, 1864.
Note Jedenfalls infolge Druckfehlers — statt dessen Berliner Schachzeitung 1840 an-
fiihrt, wird dieselbe Stelle gemeint haben ([Ahr1901]).

[CDF+2009] R.D. Chatham, M. Doyle, G.H. Fricke, J. Reitmann, R.D. Skaggs, and
M. Wolff. Independence and domination separation on chessboard graphs. Journal
of Combinatorial Mathematics and Combinatorial Computing, 68:3–17, 2009. url
Abstract A legal placement of Queens is any placement of Queens on an order N
chessboard in which any two attacking Queens can be separated by a Pawn. The Queens
independence separation number is the minimum number of Pawns which can be placed
on an n×n board to result in a separated board on which a maximum of m independent
Queens can be placed. We prove that N + k Queens can be separated by k Pawns for
large enough N and provide some results on the number of fundamental solutions to this
problem. We also introduce separation relative to other domination-related parameters
for Queens, Rooks, and Bishops.

[CDJ+2012] R.D. Chatham, M. Doyle, R.J. Jeffers, W.A. Kosters, R.D. Skaggs, and J.A.
Ward. Centrosymmetric solutions to chessboard separation problems. Bulletin of the
Institute of Combinatorics and its Applications, 65, 2012. url
Abstract Given a regular chessboard, can you place eight queens on it, so that no two
queens attack each other? More generally, given a square chessboard with N rows and
N columns, can you place N queens on it, so that no two queens attack each other?
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This puzzle, known as the N queens problem, is old, and famous, and has an extensive
history. Here we present a recently formulated elaboration, which we call the N + k
queens problem. We describe some of what is known about the N + k queens problem,
prove a few new results, and propose some open questions.

[CDM+2009] R.D. Chatham, M. Doyle, J.J. Miller, A.M. Rogers, R.D. Skaggs, and J.A.
Ward. Algorithm performance for chessboard separation problems. Journal of Com-
binatorial Mathematics and Combinatorial Computing, 70, 2009. url
Abstract Chessboard separation problems are modifications to classic chessboard
problems, such as the N Queens Problem, in which obstacles are placed on the chess-
board. This paper focuses on a variation known as the N+k Queens Problem, in which
k Pawns and N + k mutually non-attacking Queens are to be placed on an N-by-N
chessboard. Results are presented from performance studies examining the efficiency
of sequential and parallel programs that count the number of solutions to the N + k
Queens Problem using traditional backtracking and dancing links. The use of Stochas-
tic Local Search for determining existence of solutions is also presented. In addition,
preliminary results are given for a similar problem, the N + k Amazons.

[CFS2006] R.D. Chatham, G.H. Fricke, and R.D. Skaggs. The queens separation problem.
Utilitas Mathematica, 69:129–141, 2006. url
Abstract We define a legal placement of Queens to be any placement in which any
two attacking Queens can be separated by a Pawn. The Queens separation number is
defined to be equal to the minimum number of Pawns which can separate some legal
placement of m Queens on an order n chess board. We prove that n+ 1 Queens can be
separated by 1 Pawn and conjecture that n+k Queens can be separated by k Pawns for
large enough n. We also provide some results on the separation number of other chess
pieces.

[CH1986] E.J. Cockayne and S.T. Hedetniemi. On the diagonal queens domination prob-
lem. Journal of Combinatorial Theory, Series A, 42:137–139, 1986. doi>
Abstract It is shown that the problem of covering an n× n chessboard with a mini-
mum number of queens on a major diagonal is related to the number-theoretic function
r3(n), the smallest number of integers in a subset of {1, . . . , n} which must contain
three terms in arithmetic progression.

[Cha1974] A.K. Chandra. Independent permutations, as related to a problem of Moser
and a theorem of Pólya. Journal of Combinatorial Theory, Series A, 16:111–120, 1974.
doi>
Abstract We introduce the notion of a set of independent permutations on the do-
main {0, 1, . . . n−1}, and obtain bounds on the size of the largest such set. The results
are applied to a problem proposed by Moser in which he asked for the largest number
of nodes in a d-cube of side n such that no n of these nodes are collinear. Independent
permutations are also related to the problem of placing n non-capturing superqueens
(chess queens with wrap-around capability) on an n×n board. As a special case of this
treatment we obtain Pólya’s theorem that this problem can be solved if and only if n is
not a multiple of 2 or 3.

[Cha2009a] R.D. Chatham. The N + k queens problem page, 2009. url
Note Website.
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[Cha2009b] R.D. Chatham. Reflections on theN+k queens problem. College Mathematics
Journal, 40:204–210, 2009. url
Abstract Given a regular chessboard, can you place eight queens on it, so that no two
queens attack each other? More generally, given a square chessboard with N rows and
N columns, can you place N queens on it, so that no two queens attack each other?
This puzzle, known as the N queens problem, is old, and famous, and has an extensive
history. Here we present a recently formulated elaboration, which we call the N + k
queens problem. We describe some of what is known about the N + k queens problem,
prove a few new results, and propose some open questions.

[Che1991] M. Chen. The maximum number of mutually uncapturable strong queens.
Journal of Qinghai Normal University (Natural Science), 1:9–12, 1991.

[Che2007] J.-C. Chen. An efficient non-probabilistic search algorithm for the n-queens
problem. In Proceedings of the Third Conference on IASTED International Conference:
Advances in Computer Science and Technology, 2007. url
Abstract We present a new heuristic search for the n-Queens problem, which is
neither backtracking nor random search. This algorithm finds systematically a solution
in linear time. Its speed is faster than the fastest algorithm known so far. On an
ordinary personal computer, it can find a solution for 3000000 Queens in less than
5 seconds.

[Chv2005] V. Chvátal. Colouring the queen graphs, 2005. url
Note Website.

[CHZ2013] S. Chaiken, C.R.H. Hanusa, and T. Zaslavsky. A q-queens problem. I. General
theory. arXiv, arXiv:1303.1879, 2013. url
Abstract By means of the Ehrhart theory of inside-out polytopes we establish a
general counting theory for nonattacking placements of chess pieces with unbounded
straight-line moves, such as the queen, on a polygonal convex board. The number of
ways to place q identical nonattacking pieces on a board of variable size n but fixed
shape is given by a quasipolynomial function of n, of degree 2q, whose coefficients
are polynomials in q. The number of combinatorially distinct types of nonattacking
configuration is the evaluation of our quasipolynomial at n = −1. The quasipolyno-
mial has an exact formula that depends on a matroid of weighted graphs, which is in
turn determined by incidence properties of lines in the real affine plane. We study the
highest-degree coefficients and also the period of the quasipolynomial, which is needed
if the quasipolynomial is to be interpolated from data, and which is bounded by some
function, not well understood, of the board and the piece’s move directions. In subse-
quent parts we specialize to the square board and then to subsets of the queen’s moves,
and we prove exact formulas (most but not all already known empirically) for small
numbers of queens, bishops, and nightriders. Each part concludes with open questions,
both specialized and broad.

[CHZ2015] S. Chaiken, C.R.H. Hanusa, and T. Zaslavsky. A q-queens problem. II. The
square board. Journal of Algebraic Combinatorics, 41:619–642, 2015. doi>
Abstract We apply to the n × n chessboard the counting theory from Part I for
nonattacking placements of chess pieces with unbounded straight-line moves, such as
the queen. Part I showed that the number of ways to place q identical nonattacking
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pieces is given by a quasipolynomial function of n of degree 2q, whose coefficients are
(essentially) polynomials in q that depend cyclically on n. Here, we study the periods
of the quasipolynomial and its coefficients, which are bounded by functions, not well
understood, of the pieces move directions, and we develop exact formulas for the very
highest coefficients. The coefficients of the three highest powers of n do not vary with
n. On the other hand, we present simple pieces for which the fourth coefficient varies
periodically. We develop detailed properties of counting quasipolynomials that will be
applied in sequels to partial queens, whose moves are subsets of those of the queen, and
the nightrider, whose moves are extended knights moves. We conclude with the first,
though strange, formula for the classical n-Queens Problem and with several conjectures
and open problems.

[Cla1985] D.S. Clark. A combinatorial theorem on circulant matrices. The American
Mathematical Monthly, 92(10):725–729, 1985. doi>

[CM2001] E.J. Cockayne and C.M. Mynhardt. Properties of queens graphs and the ir-
redundance number of Q7. Australasian Journal of Combinatorics, 23:285–299, 2001.
url
Abstract We prove results concerning neighbours of vertex subsets and irredundance
in the queens graph Qn. We also establish that the lower irredundance number of Q7

is equal to four.

[CMV1986] R.M. Clapp, T.N. Mudge, and R.A. Volz. Solutions to the n-queens problem
using tasking in Ada. ACM SIGPLAN Notices, 21:99–110, 1986. doi>
Refers to [Wir1976]

[Coc1990] E.J. Cockayne. Chessboard domination problems. Discrete Mathematics,
86:13–20, 1990. doi>
Abstract A graph may be formed from an n × n chessboard by taking the squares
as the vertices and two vertices are adjacent if a chess piece situated on one square
covers the other. In this paper we survey some recent results concerning domination
parameters for certain graphs constructed in this way.

[Cou2006] N. Cournia. Chessboard domination on programmable graphics hardware. In
Proceedings of the 44th Annual Southeast Regional Conference, pages 62–67, 2006. doi>
Abstract In this paper we present an algorithm to compute the minimum dominating
number of a chessboard graph given any chess piece. We use the CPU to compute possi-
ble minimally dominating sets, which we then send to programmable graphics hardware
to determine the set’s domination. We find that the GPU accelerated algorithm per-
forms better than a comparable CPU based algorithm for board sizes greater than 9.
To our knowledge, this paper presents the first algorithm to determine the minimum
domination number of a chessboard graph using the GPU.

[CP1994] P. Cull and R. Pandey. Isomorphism and the n-queens problem. ACM SIGCSE
Bulletin, 26:29–36, 1994. doi>
Abstract The n-Queens problem is commonly used to teach the programming tech-
nique of backtrack search. The n-Queens problem may also be used to illustrate the im-
portant concept of isomorphism. Here we show how the n-Queens problem can be used
as a vehicle to teach the concepts of isomorphism, transformation groups or generators,
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and equivalence classes. We indicate how these ideas can be used in a programming ex-
ercise. We include a bibliography of 29 papers.

[CR1999] C.J. Colbourn and A. Rosa. Triple Systems. Oxford Mathematical Monographs.
The Clarendon Press — Oxford University Press, 1999.

[Cra1992] K.D. Crawford. Solving the n-queens problem using Genetic Algorithms. In
Proceedings of the 1992 ACM/SIGAPP Symposium on Applied Computing: Techno-
logical Challenges of the 1990’s, pages 1039–1047, 1992. doi>

[CS1987] E.J. Cockayne and P.H. Spencer. On the independent queens covering problem.
Graphs and Combinatorics, 4:101–110, 1987. doi>
Note The minimum number of Queens which can be placed on an n × n chessboard
so that all other squares are dominated by at least one Queen but no Queen covers
another, is shown to be less than 0.705n+ 2.305.

[CS1988] D.S. Clark and O. Shisha. Proof without words: Inductive construction of an
infinite chessboard with maximal placement of nonattacking queens. Mathematics
Magazine, 61:98, 1988. url
Note A one page paper without words . . .
Refers to [CS1989], [Kra1942]

[CS1989] D.S. Clark and O. Shisha. Invulnerable queens on an infinite chessboard. In Pro-
ceedings of the Third International Conference on Combinatorial Mathematics, pages
133–139, 1989.

[CS2006] M. Cadoli and M. Schaerf. Partial solutions with unique completion. In Rea-
soning, Action and Interaction in AI Theories and Systems, volume 4155 of Lecture
Notes in Computer Science, pages 101–115. Springer, 2006. doi>
Abstract In this paper we investigate the computational complexity of combinato-
rial problems with givens, i.e., partial solutions, and where a unique solution is re-
quired. Examples for this article are taken from the games of Sudoku, N-queens and
related games. We will show the computational complexity of many decision and search
problems related to Sudoku, a number of similar games and their generalization. Fur-
thermore, we propose a logical description of several such problems that can lead to a
formulation in the language of Quantified Boolean Formulae (QBF) and, hence, their
mechanization via a QBF solver. Some experiments on finding the minimum number
of givens necessary/sufficient to guarantee uniqueness of solution are shown.

[CSZ1992a] M. Chen, R. Sun, and J. Zhu. Partial n-solution to the modular n-queens
problem. ii. In Combinatorics and Graph Theory, Proceedings of the Spring School and
International Conference on Combinatorics (SSICC ’92), pages 1–4. World Scientific,
1992.

[CSZ1992b] M. Chen, R. Sun, and J. Zhu. Partial n-solutions to the modular n-queen
problem. Chinese Science Bulletin, 37(17):1422–1425, 1992.

[Cve1969] D. Cvetković. Some remarks on the problem of n-queens. Univ. Beograd. Publ.
Elektrotehn. Fak. Ser. Mat. Fiz., 274-301(290):100–102, 1969.

12

http://dx.doi.org/10.1145/130069.130128
http://dx.doi.org/10.1007/BF01864158
http://www.jstor.org/stable/2690038
http://dx.doi.org/10.1007/11829263


[CW2005] T.A. Carter and W.D. Weakley. The n-queens problem with diagonal con-
straints. Journal of Combinatorial Mathematics and Combinatorial Computing,
53:165–178, 2005.

[Dea2004] S. Dealy. Common search strategies and heuristics with respect to the N-queens
problem, 2004. CS504 Term Project. url
Abstract The N-Queens problem is examined and programmatically implemented
for Depth First Search, Depth First Search with improvements, Branch and Bound,
and Beam Search. Several heuristics are presented and implemented with each of the
searches. Results were analyzed for number of nodes generated, number of nodes tra-
versed, and relative execution time. While heuristics were found which gave Branch
and Bound and Beam Search a significant edge over DFS, there exist polynomial time
algorithms using complete board assignment and heuristic repair methods which are
purported to do better.

[DES2002] H.A. Del Manzano, C. Echevar(r)ia, and L. Steinberg. Quantum algorithm for
n-queens problem. In Computing Research Conference (CRC2002), Mayagüez, Puerto
Rico, 2002. url

[DH2005] H. Dietrich and H. Harborth. Independence on triangular triangle boards. Ab-
handlungen der Braunschweigischen Wissenschaftlichen Gesellschaft, 54:73–87, 2005.
Abstract Triangular parts of the Euclidean triangle tessellation of the plane are
considered as gameboards Tn. The independence number βn is the maximum number of
non-attacking copies of a piece on Tn. For nine of the chess-like pieces βn is determined
completely.

[DMTB2010] A. Draa, S. Meshoul, H. Talbi, and M. Batouche. A quantum-inspired dif-
ferential evolution algorithm for solving the n-queens problem. The International Arab
Journal of Information Technology, 7:21–27, 2010. url
Abstract In this paper, a quantum-inspired differential evolution algorithm for solv-
ing the N-queens problem is presented. The N-queens problem aims at placing N queens
on an NxN chessboard, in such a way that no queen could capture any of the others. The
proposed algorithm is a novel hybridization between differential evolution algorithms
and quantum computing principles. Accordingly, differential evolution algorithms have
been enhanced by the adoption of some quantum concepts such as quantum bits and
states superposition. The use of the quantum interference has allowed this hybrid ap-
proach to have a remarkable efficiency and good results.
Refers to [DTB2005], [Wat2004], [EST1992]

[DP1998] D.S. Dean and G. Parisi. Statistical mechanics of a two-dimensional system
with long-range interactions. Journal of Physics A: Mathematics and General, 31:3949–
3960, 1998. doi>
Abstract We analyse the statistical physics of a two-dimensional lattice-based system
with long-range interactions. The particles interact in a way analogous to the queens
on a chess board. The long-range nature of the interaction gives the mathematics of the
problem a simple geometric structure which simplifies both the analytic and numerical
study of the system. We present some analytic calculations for the statics of the problem
and we also perform Monte Carlo simulations which exhibit a dynamical transition
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between a high-temperature liquid regime and a low-temperature glassy regime exhibiting
ageing in the two time-correlation functions.

[DRR2008] M. Doyle, B. Rawe, and A. Rogers. JDLX: Visualization of dancing links.
Journal of Computing Sciences in Colleges, 24:9–15, 2008. url
Abstract Data structures courses have settled on a familiar canon of structures and
algorithms, and this is reflected in the standard textbooks. It is often useful for in-
structors to enliven such courses by presenting data structures that are of more recent
interest, ones that may simultaneously challenge students’ understanding of algorithms
and their skills in programming. Exact cover problems, exemplified by the newly popu-
lar Sudoku game as well as the classic 8-queens problem, may be efficiently solved by
the DLX algorithm popularized by Knuth in 2000, and this can provide a good capstone
experience in a data structures course. The DLX algorithm operates by recursion on
circular multiply linked lists. Because the pointer mechanics of the DLX algorithm is
quite complicated, visualization techniques are called for. As the choreography of “danc-
ing links” in DLX is highly visual anyway, this is very natural. In this paper we review
best practices in algorithmic visualization for learners, and then describe a Java-based
visualization of DLX applied to N-Queens. We also present some preliminary results
that indicate that it is effective in enhancing student learning.
Refers to [CDF+2009], [Knu2000]

[DRT1992] O. Demirörs, N. Rafraf, and M.M. Tanik. Obtaining n-queens solutions from
magic squares and constructing magic squares from n-queens solutions. Journal of
Recreational Mathematics, 24:272–280, 1992.

[dSdSB2000] I.N. da Silva, A.N. de Souza, and M.E. Bordon. A modified Hopfield model
for solving the N -queens problem. In Neural Networks, Proceedings of the IEEE-INNS-
ENNS International Joint Conference on, pages 509−−514, 2000. doi>
Abstract A neural network model for solving the N-Queens problem is presented in
this paper. More specifically, a modified Hopfield network is developed and its internal
parameters are computed using the valid-subspace technique. These parameters guaran-
tee the convergence of the network to the equilibrium points. The network is shown to
be completely stable and globally convergent to the solutions of the N-Queens problem.
Simulation results are presented to validate the proposed approach.

[DT1991] O. Demirörs and M.M. Tanik. Peaceful queens and magic squares. Techni-
cal Report 91-CSE-7, Department of Computer Science and Engineering, Southern
Methodist University, 1991.

[DTB2005] A. Draa, H. Talbi, and M. Batouche. A quantum-inspired Genetic Algorithm
for solving the N -queens problem. In Proceedings of the 7th International Symposium
on Programming and Systems (ISPS2005), pages 145–152, 2005.

[Dud1917] H.E. Dudeney. Amusements in Mathematics. Thomas Nelson & Sons, Limited,
1917. url
Note Later editions from Dover Publications, Inc. Chapter Chessboard Problems

[Dur] Durango Bill. The N -queens problem. url
Note Website.
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[Eic1980] B. Eickenscheidt. Das n-Damen-Problem auf dem Zylinderbrett. feenschach,
50:382–385, 1980.
Note See also joint work with B. Schwarzkopf, feenschach 1970, p. 811

[EL2003] E. Erdem and V. Lifschitz. Tight logic programs. Theory and Practice of Logic
Programming, 3:499–518, 2003. doi>
Abstract This note is about the relationship between two theories of negation as
failure — one based on program completion, the other based on stable models, or answer
sets. Franois Fages showed that if a logic program satisfies a certain syntactic condition,
which is now called tightness, then its stable models can be characterized as the models
of its completion. We extend the definition of tightness and Fages’ theorem to programs
with nested expressions in the bodies of rules, and study tight logic programs containing
the definition of the transitive closure of a predicate.

[Eng] M. Engelhardt. The n queens problem. url
Note Website.

[Eng2007] M.R. Engelhardt. A group-based search for solutions of the n-queens problem.
Discrete Mathematics, 307:2535–2551, 2007. doi>
Abstract The n-Queens problem is a well-known problem in mathematics, yet a full
search for n-Queens solutions has been tackled until now using only simple algorithms
(with the exception of the RivinZabih algorithm). In this article, we discuss optimiza-
tions that mainly rely on group actions on the set of n-Queens solutions. Most of our
arguments deal with the case of toroidal Queens; at the end, the application to the reg-
ular n-Queens problem is discussed, and also the RivinZabih algorithm.
Refers to [RVZ1994], [RZ1992], [SS2003]

[Eng2010] M. Engelhardt. Der Stammbaum der Lösungen des Damenproblems. Spektrum
der Wissenschaft, pages 68–71, August 2010. url

[EQAN2004] E. El-Qawasmeh and K. Al-Noubani. A polynomial time algorithm for the
N -queens problems. In Proceedings of the IASTED International Conference on Neural
Networks and Computational Intelligence (NCI 2004), pages 191–195, 2004.

[EQAN2005] E. El-Qawasmeh and K. Al-Noubani. Reducing the time complexity of the
N -queens problem. International Journal on Artificial Intelligence Tools, 14:545–557,
2005. doi>
Abstract This paper presents a fast algorithm for solving the n-queens problem. The
basic idea of this algorithm is to use pre-computed solutions in 75% of the cases, while
the remaining cases are solved by calling the Sosic’s algorithm. The novelty of this al-
gorithm is in the observation that these pre-computable cases exhibit a modular nature.
In addition, the pre-computed solutions run 100 times faster than Sosic’s algorithm in
most cases.

[ERR1994] A.E. Eiben, P.-E. Raué, and Zs. Ruttkay. Solving constraint satisfaction prob-
lems using Genetic Algorithms. In Proceedings of the 1st IEEE World Conference on
Computational Intelligence, volume 2, pages 542–547. IEEE Service Center, 1994. doi>
Abstract This article discusses the applicability of genetic algorithms (GAs) to solve
constraint satisfaction problems (CSPs). We discuss the requirements and possibilities
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of defining so-called heuristic GAs (HGAs), which can be expected to be effective and
efficient methods to solve CSPs since they adopt heuristics used in classical CSP solv-
ing search techniques. We present and analyse experimental results gained by testing
different heuristic GAs on the N-queens problem and on the graph 3-colouring problem

[ERR1995] A.E. Eiben, P.-E. Raué, and Zs. Ruttkay. GA-easy and GA-hard constraint
satisfaction problems. In Proceedings of the ECAI-94 Workshop on Constraint Process-
ing, volume 923 of Lecture Notes in Computer Science, pages 267–283. Springer-Verlag,
1995. doi>
Abstract In this paper we discuss the possibilities of applying genetic algorithms
(GA) for solving constraint satisfaction problems (CSP). We point out how the greed-
iness of deterministic classical CSP solving techniques can be counterbalanced by the
random mechanisms of GAs. We tested our ideas by running experiments on four dif-
ferent CSPs: N-queens, graph 3-colouring, the traffic lights and the Zebra problem.
Three of the problems have proven to be GA-easy, and even for the GA-hard one the
performance of the GA could be boosted by techniques familiar in classical methods.
Thus GAs are promising tools for solving CSPs. In the discussion, we address the
issues of non-solvable CSPs and the generation of all the solutions.

[ERT1991] C. Erbas, N. Rafraf, and M.M. Tanik. Magic squares constructing by the
uniform step method provide solutions to the n-queens problem. Technical Report
91-CSE-25, Department of Computer Science and Engineering, Southern Methodist
University, 1991.

[EST1991] C. Erbas, S. Sarkeshik, and M.M. Tanik. Algorithmic and constructive ap-
proaches to the n-queens problem. Technical Report 91-CSE-31, Department of Com-
puter Science and Engineering, Southern Methodist University, 1991.

[EST1992] C. Erbas, S. Sarkeshik, and M.M. Tanik. Different perspectives of the n-queens
problem. In CSC ’92: Proceedings of the 1992 ACM Annual Conference on Commu-
nications, pages 99–108, 1992. doi>
Abstract The N-Queens problem is a commonly used example in computer science.
There are numerous approaches proposed to solve the problem. We introduce several
definitions of the problem, and review some of the algorithms. We classify the algo-
rithms for the N-Queens problem into 3 categories. The first category comprises the
algorithms generating all the solutions for a given N . The algorithms in the second
category are desinged to generate only the fundamental solutions [Top1982]. The algo-
rithms in the last category generate only one or several solutions but not necessarily
all of them.

[ET1991a] C. Erbas and M.M. Tanik. n-queens problem and its algorithms. Techni-
cal Report 91-CSE-8, Department of Computer Science and Engineering, Southern
Methodist University, 1991.

[ET1991b] C. Erbas and M.M. Tanik. n-queens problem and its connection to the poly-
gons. Technical Report 91-CSE-21, Department of Computer Science and Engineering,
Southern Methodist University, 1991.
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[ET1992] C. Erbas and M.M. Tanik. Storage schemes for parallel memory systems and
the n-queens problem. In Proceedings of the 15th Anniversary of the ASME ETCE
Confererence, Computer Applications Symposium, volume 43, pages 115–120, 1992.

[ET1994] C. Erbas and M.M. Tanik. Parallel memory allocation and data alignment in
SIMD machines. Parallel Algorithms and Applications, 4:139–151, 1994. doi>
Note Preliminary version appeared under the title: Storage schemes for parallel mem-
ory systems and the n-Queens problem.
Abstract In this paper, we introduce a memory storage scheme allowing conflict-free
parallel access to rows, columns, square blocks, distributed blocks, and positive and neg-
ative diagonals of two dimensional arrays. Unlike the existing schemes, the proposed
scheme can be used for an arbitrary number of memory modules and an arbitrary size
of matrices. We develop a systematic procedure for the memory allocation based on
a placement matrix constructed using circulant matrices. We, also, analyze the data
alignment requirements of the proposed scheme, and demonstrate that the data vectors
read from memory modules can be aligned for the processors using a set of shift, flip,
and shuffle operations, which can be implemented by a data manipulation network.

[ET1995] C. Erbas and M.M. Tanik. Generating solutions to the n-queens problem using
2-circulants. Mathematics Magazine, 68:343–356, 1995. url

[ETA1992a] C. Erbas, M.M. Tanik, and Z. Aliyazicioglu. Linear congruence equations
for the solutions of the n-queens problem. Information Processing Letters, 41:301–306,
1992. doi>
Abstract We demonstrate a method using linear congruence equations to generate
solutions to the N-Queens problem. There are only a few papers in the literature gen-
erating solutions for every N . Our method generates solutions for every N , and the
number of solutions produced by our method is larger than the number of solutions
given in these papers.

[ETA1992b] C. Erbas, M.M. Tanik, and Z. Aliyazicioglu. A note on Falkowskís n-queens
solutions. Technical Report 92-CSE-14, Department of Computer Science and Engi-
neering, Southern Methodist University, 1992.

[ETN1993] C. Erbas, M.M. Tanik, and V.S.S. Nair. A circulant matrix based approach
to storage schemes for parallel memory systems. In Proceedings of the Fifth IEEE
Symposium on Parallel and Distributed Processing, pages 92–99. IEEE, 1993. doi>
Abstract We introduce a memory storage scheme allowing conflict-free parallel access
to rows, columns, square blocks, distributed blocks, and positive and negative diagonals
of two dimensional arrays. Unlike the existing schemes, the proposed scheme can be
used for an arbitrary number of memory modules and an arbitrary size of the arrays.
We develop a systematic procedure for the memory allocation based on a placement
matrix constructed using circulant matrices

[Fin2003] S.R. Finch. Encyclopedia of Mathematics and its Applications, volume 94,
chapter Mathematical Constants. Cambridge University Press, 2003.

[FJ1984] L.R. Foulds and D.G. Johnston. An application of graph theory and integer
programming: Chessboard nonattacking puzzles. Mathematics Magazine, 57(3):95–
104, 1984. url
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[Fol1987] J. Foley. Manchester dataflow machine: Preliminary benchmark test evalua-
tion. Technical Report UMCS-87-11-2, University of Manchester, Computer Science
Department, 1987. url
Abstract The Manchester Dataflow Hardware is supported by a Software compiler for
the SISAL language and a number of programs have been written to act as Benchmark
tests for the hardware. The Benchmark set used contains a wide range of programs
including numerical algorithms, sorting, graph colouring and n Queens algorithms plus
others. All programs are compiled using a range of optimisations, including function
inlining and vectorisation. The resulting statistics, obtained both by simulation and
hardware are presented.

[Fra1894] J. Franel. n-queens solution. L’Intermédiaire des Mathématiciens, 11:140–141,
1894.
Note Article no. 123.

[FS1986] B.-J. Falkowski and L. Schmitz. A note on the queen’s problem. Information
Processing Letters, 23:39–46, 1986. doi>
Refers to [Gin1939], [GB1965], [Net1901]

[FW1974] J.P. Fillmore and S.G. Williamson. On backtracking: A combinatorial descrip-
tion of the algorithm. SIAM Journal on Computing, 3:41–55, 1974. doi>
Abstract A basic algorithm for solving many discrete problems is the so-called “back-
tracking” algorithm. The basic problem is that of generating the elements of a subset
S0 of a finite set in an efficient manner. If a group G acts on S0, then one might
wish to obtain only nonisomorphic elements of S0. In this paper the basic backtracking
algorithm is described in terms of chains of partitions on the set S. The corresponding
isomorph rejection problem is described in terms of G-invariant chains of partitions
on S. Examples and flow charts are given.

[GAMBS2004] R. Gómez(-Aiza), J.J. Montellano(-Ballesteros), and R. Strausz. On the
modular n-queen problem in higher dimensions, 2004. url
Abstract The modular n-queen problem in higher dimensions was introduced by
Nudelman [Nud1995]. He showed that for a complete solution to exist in the d-
dimensional modular n-chessboard, it is necessary that gcd(n, (2d− 1)!) = 1, and that
it is sufficient that gcd(n, (2d− 1)!) = 1. He conjectured that the last condition is also
necessary and showed that this is indeed the case for the class of linear solutions. In
this notes, we observe that the conjecture is true for the larger class of polynomial so-
lutions, which are solutions we present as a natural generalization of the bidimensional
solutions developed by Kløve [Klø1977]. We also generalize constructions of bidimen-
sional solutions developed also by Kløve [Klø1981].
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Queens and Other Chessboard Diversions.

[Gar1972] Martin Gardner. Mathematical games. Scientific American, 227:176–182, 1972.

18

http://intranet.cs.man.ac.uk/Intranet_subweb/library/cstechrep/Abstracts/UMCS-87-11-2.html
http://dx.doi.org/10.1016/0020-0190(86)90128-6
http://dx.doi.org/10.1137/0203004
http://www.vnster.nl/papers/gomez2004.pdf


[Gar1980] M. Gardner. Patterns in primes are a clue to the strong law of small numbers.
Scientific American, 243:18–28, 1980.

[Gar1983] M. Gardner. Wheels, Life, and Other Mathematical Amusements. Freeman,
1983.
Note Problem 8.19 is about superqueens, unique solution on the n = 10 board; in
Chapter 17 we read about multicolor nonattacking queens, and more.
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then given.
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figuration is said to be non-attacking if no queen attacks another queen. Let f(m)
and g(m) equal the minimum number of queens and the minimum number of non-
attacking queens, respectively, needed to dominate an m × m chessboard. We prove
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that: 1. f(m) ≤ 14
23
m + O(1), and 2. g(m) ≤ 2

3
m + O(1). These are the best upper

bounds known at the present time for these functions.
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been very widely used as a benchmark in Artificial Intelligence, but conclusions on it
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of single-stage decisions, each with a simple criterion of success.
Refers to [Bal1892]
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Proceedings of the IEEE, 72:1143–1163, 1984. doi>
Abstract A Costas array is an n×n array of dots and blanks with exactly one dot in
each row and column, and with distinct vector differences between all pairs of dots. As
a frequency-hop pattern for radar or sonar, a Costas array has an optimum ambiguity
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of sets of dominating queens for chessboards of size 29, 41, 45, and 57 are 15, 21,23
and 29 respectively. As a by-product the numbers of non-isomorphic ways of covering
a chessboard of size n with k independent queens for 1 ≤ n ≤ 15 and 1 ≤ k ≤ 8, as
well as the case n = 16, k = 8, are computed.
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Abstract Hedayat and Federer (Ann. of Statist. 3 (1975), 445-447) proved that Knut
Vik designs do not exist for all even orders. They gave a simple algorithm for the
construction of such designs for all other orders, except when the order of the design
is divisible by 3. The existence of Knut Vik designs of orders divisible by 3 was left
unsolved by these authors. It is shown here that Knut Vik designs do not also exist for
all orders divisible by 3. An easy algorithm based on a result of Euler is provided for
the construction of orthogonal Knut Vik designs for all orders not divisible by 2 or 3.
Therefore, we can say that Knut Vik designs and orthogonal Knut Vik designs of order
n exist if and only if n is not divisible by 2 or 3. The results are based on the concepts
of a super diagonal and parallel super diagonals in an n × n array, which have been
introduced and studied for the first time here. Other relevant results are also given.
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q2 + q − 2 there is a maximal partial spread of size n in PG(3, q) where q is odd and
q ≥ 7. We also prove that there are maximal partial spreads of size (q2 + 3)/2 when
gcd(q + 1, 24) = 2 or 4 and of size (q2 + 5)/2 when gcd(q + 1, 24) = 4.
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interval (q2 + 1)/2 + 3 ≤ n ≤ (5q2 + 4q + 7)/8, there is a maximal partial spread of
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[Hed2002] O. Heden. Maximal partial spreads and the modular n-queen problem III.
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the case q + 1 ≡ 0,±2,±4,±6,±10, 12 (mod 24). In all these cases, maximal partial
spreads of the size (q2 + 1)/2 + n have also been constructed for some small values of
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23

http://dx.doi.org/10.1016/0097-3165(77)90007-3
http://dx.doi.org/10.1016/0012-365X(92)90050-P
http://dx.doi.org/10.1016/0012-365X(93)90566-C
http://dx.doi.org/10.1016/0012-365X(94)00008-7
http://dx.doi.org/10.1016/S0012-365X(00)00464-7


these results with previous results of the author and with that of others we can conclude
that there exist maximal partial spreads in PG(3, q), q = pk where p is an odd prime
and q ≥ 7, of size n for any integer n in the interval (q2 + 1)/2 + 6 ≤ n ≤ q2 − q + 2.
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Abstract A complete mapping of an algebraic structure (G,+) is a bijection f(x) of
G over G such that f(x) = x + h(x) for some bijection h(x). A question often raised
is, given an algebraic structure G, how many complete mappings of G there are. In
this paper we investigate a somewhat different problem. That is, how difficult it is to
count the number of complete mappings of G. We show that for a closed structure,
the counting problem is #P-complete. For a closed structure with a left-identity and
left-cancellation law, the counting problem is also #P-complete. For an abelian group,
on the other hand, the counting problem is beyond the #P-class. Furthermore, the
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the #P-class.
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Abstract Let L be a Latin square of order n with entries from {0, 1, . . . , n − 1}. In
addition, L is said to have the (n, k) property if, in each right or left wrap around
diagonal, the number of cells with entries smaller than k is exactly k. It is established
that a necessary and sufficient condition for the existence of Latin squares having the
(n, k) property is that of (2|n ⇒ 2|k) and (3|n ⇒ 3|k). Also, these Latin squares are
related to a problem of placing nonattacking queens on a toroidal chessboard.
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Abstract This paper presents a new approach to solving n-Queen problems, which
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Abstract The authors determined how well the operators of genetic algorithms han-
dled very difficult combinatorial and constraint satisfaction problems. The n-Queens
problem is a complex combinatorial problem. Genetic algorithms are efficient and ro-
bust search algorithms that can solve the n-Queens problem. To derive a problem, the
genetic algorithm treats the problem as an ordering or sequencing problem and blindly
traverses the search space to satisfy the large number of constraints posed by the inher-
ent complexity of the problem. Results are presented for N < 200.
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simulated tempering and exchange Monte Carlo are typical examples of this family. We
briefly review extended ensemble Monte Carlo methods, particularly focusing on the
exchange Monte Carlo method. Using the method, we study the number of solutions of
the N queens problem which is a kind of constraint-satisfaction problem. This problem
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and energy barriers between them. Our numerical result supports the conjecture that
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effects such as superposition and entanglement. The N-Queens Problem is a notable
example that falls under the class of NP-complete problems. It involves the arrange-
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des Sciences Paris, Série I Mathématique, 342:157–160, 2006. doi>
Abstract Until 2003 no chromatic numbers (χn) for the queen graphs were avail-
able for n > 9 except where n is not a multiple of 2 or 3. In this research an-
nouncement we present an exact algorithm which provides coloring solutions for
n=12,14,15,16,18,20,21,22,24,26,28 and 32 such as χn = n. Then we prove that there
exists an infinite number of values for n such that n = 2p or n = 3p, and χn = n.

[Vel1998a] M. Velucchi. Different dispositions on the chessboard, 1998. url

[Vel1998b] M. Velucchi. For me, this is the best chess-puzzle! Non-dominating queens
problem, 1998. url

[VGL2002] P. Vaderlind, R.K. Guy, and L.C. Larson. The Inquisitive Problem Solver.
MAA Problem Books Series. Mathematical Association of America, Washington, DC,
2002.

[VH2004a] M. Vasquez and D. Habet. Algorithmes complet et incomplet pour la col-
oration des graphes de reines. In Programmation en Logique avec Contraintes (JF-
PLC2004), 2004.

45

http://www.kirtundercoffer.com/publications/QueensProblemRevisited.html
http://dx.doi.org/10.1145/122344.1063799
http://dx.doi.org/10.1023/B:HEUR.0000034713.28244.e1
http://dx.doi.org/doi:10.1016/j.crma.2005.11.022
http://anduin.eldar.org/~problemi/papers.html
http://anduin.eldar.org/~problemi/papers.html


[VH2004b] M. Vasquez and D. Habet. Complete and incomplete algorithms for the queen
graph coloring problem. In Proceedings of the 16th European Conference on Articial
Intelligence (ECAI04), page 226230, 2004. url
Abstract The queen graph coloring problem consists in covering a n× n chessboard
with n2 queens, so that two queens of the same color cannot attack each other. When
the size, n, of the chessboard is a multiple of 2 or 3, it is hard to color the queen
graph with only n colors. We have developed an exact algorithm which is able to solve
exhaustively this problem for dimensions up to n = 12 and find one solution for n = 14
in one week of computing time. The 454 solutions of Queens 122 show horizontal and
vertical symmetries in the color repartition on the chessboard. From this observation,
we design a new exact, but incomplete, algorithm which leads us to color Queens n2

problems with n colors for n = 15, 16, 18, 20, 21, 22, 24, 28 and 32 in less than
24 hours of computing time by the exploitation of symmetries and other geometric
properties.

[VM2005] P. Van Hentenryck and L. Michel. Constrained-Based Local Search. The MIT
Press, 2005.
Note Chapter 5.1: The Queens Problem

[Wat2004] J. Watkins. Across the Board: The Mathematics of Chessboard Problems.
Princeton, NJ: Princeton University Press, 2004.

[WG1984] R.A. Wagner and R.H. Geist. The crippled queen placement problem. Science
of Computer Programming, 4:221–248, 1984. doi>
Abstract We describe the outcome of various combinations of choices made by in-
dividuals in the solution of a non-trivial combinatorial problem on a computer. The
programs which result are analyzed with respect to execution speed, design time, and
difficulty in debugging. The solutions obtained vary dramatically as a result of choices
made in the overall design of the solution. Choices made at lower levels in the top-down
tree of design choices seem to have less effect on the parameters analyzed. A tradeoff
between mathematical effort in algorithm design, and program speed is evident, since
some solutions required solution-time which grows exponentially with the case size,
while another solution presented here gives a closed-form expression for the required
answers for all large cases.

[Wik2009] Wikipedia. Eight queens puzzle, 2009. url
Note Website.

[Wir1971] N. Wirth. Program development by stepwise refinement. Communications of
the ACM, 14:221–227, 1971. url
Abstract The creative art of programming—to be distinguished from coding—is usu-
ally taught by examples serving to exhibit certain techniques. It is here considered as
a sequence of design decisions concerning the decomposition of tasks into subtasks and
of data into data structures. The process of successive refinement of specifications is
illustrated by a short but nontrivial example, from which a number of conclusions are
drawn regarding the art and the instruction of programming.

[Wir1976] N. Wirth. Algorithms + Data Structures = Programs. Prentice-Hall, 1976.
Note Several editions. Chapter 3.5: The Eight Queens Problem

46

http://www.frontiersinai.com/ecai/ecai2004/ecai04/pdf/p0226.pdf
http://dx.doi.org/10.1016/0167-6423(84)90001-7
http://en.wikipedia.org/wiki/Eight_queens_puzzle
http://doi.acm.org/10.1145/362575.362577


[Wu1994] J.B. Wu. A solution to the n-queens problem. J. Huazhong Univ. Sci. Tech.,
22:195–198, 1994.

[WYLC2003] C.-N. Wang, S.-W. Yang, C.-M. Liu, and T. Chiang. A hierarchical dec-
imation lattice based on N -queen with an application for motion estimation. IEEE
Signal Processing Letters, 10:228–231, 2003. doi>
Abstract We present a novel technique, N-queen lattice, to spatially subsample a
block of pixels. Although this lattice is pertinent to many applications, we present an
application to speed up motion estimation with minimal loss of coding efficiency. The
N-queen lattice is constructed to characterize spatial features in all directions. It can
be hierarchically organized for motion estimation with variable nonsquare block size.
Despite the randomized lattice structure, we demonstrate that it is possible to achieve
compact data storage architecture for efficient memory access and simple hardware
implementation. Our simulations show that the N-queen lattice is superior to several
existing sampling techniques with improvement in speed by about N times and small
loss in peak SNR.

[WYLC2004] C.-N. Wang, S.-W. Yang, C.-M. Liu, and T. Chiang. A hierarchical N -queen
decimation lattice and hardware architecture for motion estimation. IEEE Transac-
tions on Circuits and Systems for Video Technology, 14:429–440, 2004. doi>
Abstract A subsampling structure, an N-Queen lattice, for spatially decimating a
block of pixels is presented. Despite its use for many applications, we demonstrate that
the N-Queen lattice can be used to speed up motion estimation with nominal loss of
coding efficiency. With a simple construction, the N-Queen lattice characterizes the
spatial features in the vertical, horizontal, and diagonal directions for both texture and
edge areas. Especially in the 4-Queen case, every skipped pixel has the minimal and
equal distance of unity to the selected pixel. It can be hierarchically organized for vari-
able nonsquare block-size motion estimation. Despite the randomized lattice, we design
compact data storage architecture for efficient memory access and simple hardware im-
plementation. Our simulations show that the N-Queen lattice is superior to several
existing sampling techniques with improvement in speed by about N times and small
loss in peak SNR (PSNR). The loss in PSNR is negligible for slow-motion video se-
quences and is less than 0.45 dB at worst for high-motion estimation sequences.

[YBFN1997] H. Yoshio, T. Baba, N. Funabiki, and S. Nishikawa. Proposal of an N -
parallel computation method for a neural network for the n-queens problem. Electron-
ics and Communications in Japan, 80:12–20, 1997.

[YF1994] C.K. Yuen and M.D. Feng. Breadth-first search in the eight queens problem.
ACM SIGPLAN Notices, 29:51–55, 1994. doi>
Abstract The Eight Queens Problem is used to illustrate some different approaches
to recursive programming and parallel processing.

[YKY1984] K. Yamamoto, Y. Kitamura, and H. Yoshikura. Computation of statistical
secondary structure of nucleic acids. Nucleic Acids Research, 12:335–346, 1984. doi>
Abstract This paper presents a computer analysis of statistical secondary structure
of nucleic acids. For a given single stranded nucleic acid, we generated “structure map”
which included all the annealig structures in the sequence. The map was transformed

47

http://dx.doi.org/10.1109/LSP.2003.814403
http://dx.doi.org/10.1109/TCSVT.2004.825550
http://dx.doi.org/10.1145/185009.185019
http://dx.doi.org/10.1093/nar/12.1Part1.335


into “energy map” by rough approximation; here, the energy level of every pairing struc-
ture consisting of more than 2 successive nucleic acid pairs was calculated. By using the
“energy map”, the probability of occurrence of each annealed structure was computed,
i.e., the structure was computed statistically. The basis of computation was the 8-queen
problem in the chess game. The validity of our computer programme was checked by
computing tRNA structure which has been well established. Successful application of
this programme to small nuclear RNAs of various origins is demonstrated.

[YWLC2001] S.-W. Yang, C.-N. Wang, C.-M. Liu, and T. Chiang. Fast motion estima-
tion using N -queen pixel decimation. In Advances in Multimedia Information Process-
ing (PCM 2001), volume 2195 of Lecture Notes in Computer Science, pages 126–133.
Springer-Verlag, Berlin, 2001. doi>
Abstract We present a technique to improve the speed of block motion estimation
using only a subset of pixels from a block to evaluate the distortion with minimal loss
of coding efficiency. To select such a subset we use a special sub-sampling structure,
N-queen pattern. The N-queen pattern can characterize the spatial information in the
vertical, horizontal and diagonal directions for both texture and edge features. In the
4-queen case, it has a special property that every skipped pixel has the minimal and
equal distance of one to the selected pixel. Despite of the randomized pattern, our tech-
nique has compact data storage architecture. Our results show that the pixel decimation
of N-queen patterns improves the speed by about N times with small loss in PSNR.
The loss in PSNR is negligible for slow motion video sequence and has 0.45 dB loss in
PSNR at worst for high motion video sequence.

[YY1964] A.M. Yaglom and I.M. Yaglom. Challenging Mathematical Problems with Ele-
mentary Solutions; Volume 1: Combinatorial Analysis and Probability Theory. Holden-
Day, Inc., 1964. url
Note Problem 41. Originally published as Neelelementarnye Zadachi v Elementarnom
Izlozhenii, by the Government Printing House for Technical-Theoretical Literature,
Moscow, 1954. Later edition (1987) by Dover Publications, Inc.

[ZG2007] C. Zeng and T. Gu. A novel assembly evolutionary algorithm for n-queens
problem. Computational Intelligence and Security Workshops, 2007. doi>
Abstract Individuals in nowadays evolutionary algorithms for n-Queens problem do
not satisfy some basic constraint conditions. Motivated by self-assembly computing, a
novel assembly evolutionary algorithm for n-Queens problem is presented. Each in-
dividual is made up of assembly-parts, assembly-seeds and status information. Some
important notions and rules regarding the novel assembly evolutionary algorithm are
discussed. Experimental results show that the algorithm finds a solution faster than
other latest evolutionary algorithms.

[Zha1998] K. Zhao. The Combinatorics of Chessboards. PhD thesis, City University of
New York, 1998.

[ZM2009] C. Zhang and J. Ma. Counting solutions for the n-queens and latin square
problems by efficient Monte Carlo simulations. Pysical Review E, 79(016703), 2009.
doi>
Abstract We apply Monte Carlo simulations to count the numbers of solutions of two
well-known combinatorial problems: the n-Queens problem and Latin square problem.

48

http://dx.doi.org/10.1007/3-540-45453-5
http://www.vnster.nl/nqueens/papers/yaglom1964.pdf
http://dx.doi.org/10.1109/CISW.2007.4425472
http://dx.doi.org/10.1103/PhysRevE.79.016703


The original system is first converted to a general thermodynamic system, from which
the number of solutions of the original system is obtained by using the method of com-
puting the partition function. Collective moves are used to further accelerate sampling:
swap moves are used in the n-Queens problem and a cluster algorithm is developed for
the Latin squares. The method can handle systems of 104 degrees of freedom with more
than 1010000 solutions. We also observe a distinct finite size effect of the Latin square
system: its heat capacity gradually develops a second maximum as the size increases.
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